Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 351, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462575

RESUMO

The surface sediments from eleven sectors perpendicular to the Egyptian Mediterranean Sea coast, along the delta region, have been assessed. These sectors cover areas of Eastern Harbour, Abu Qir Bay, Rosetta, Abo Khashaba, Burullus, Baltim, Damietta, and Manzala. The assessment process is based on determining the eight metals' (Fe, Cu, Zn, Mn, Ni, Co, Pb, and Cd) content, followed by applying different pollution and ecological risk indices such as enrichment factor (EF), geoaccumulation factor (Igeo), contamination factor (CF), Pollution Load Index (PLI), degree of contamination (Cdeg.), Nemerow Integrated Pollution Index (NIPI), and Potential Ecological Risk Index (PERI). The results indicate the average concentrations of metals (µg/g) were Fe (18,000), Mn (213), Zn (120), Ni (26), Co (13), Cu (12), Pb (10), and Cd (2). The single-pollution indices reveal that most metals were depleted to metal levels, the sediments were moderately polluted with Cd and unpolluted with other metals, and the CF values confirmed that the sediments were highly polluted with Cd and low contaminated with the rest of the metals. According to the integrated pollution indices, the Eastern Harbour, Damietta, Manzalah, and Bardawil (eastern Inlet) are the most polluted sectors relative to the rest, subjected to various point sources of pollution. Drainage management system is recommended to enhance water conservation and improve fish stocks.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Egito , Cádmio , Chumbo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Medição de Risco
2.
Mar Environ Res ; 188: 106029, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245451

RESUMO

Fluoride can affect the metabolism and physiological functioning of humans and aquatic organisms like any hazardous substance when it exceeds its permissible limits and PNEC values. The fluoride content of the lake water and sediment samples collected from different locations was determined to assess its risks to humans and its ecological toxicity in Lake Burullus. Statistical analyses show that the proximity of the supplying drains had an impact on the fluoride content. Fluoride ingestion and skin contact in lake water and sediment during swimming for child, female and male were evaluated at 95, 90, and 50%. The values of hazard quotient (HQ) and total hazard quotient (THQ) for children, females and males were less than one, reflecting that exposure to fluoride through ingestion and skin-to-skin contact while swimming poses no risks to human health. PNEC values for fluoride in lake water and sediment were estimated using the equilibrium partitioning method (EPM). The ecological risk assessment of fluoride for acute and chronic toxicity was performed for the three trophic levels based on the PNEC, the half-maximal effective concentration (EC50), the median lethal dose (LC50), the no-observed effect concentration (NOEC), and the 5% lethal concentration (EC05). The risk quotient (RQ), mixture risk characterization ratios (RCRmix), relative contribution (RC), toxic unit (TU), and sum of toxic units (STU) were estimated. The acute and chronic RCRmix(STU) and RCRmix(MEC/PNEC) produced similar values for the three trophic levels in lake water and sediment, indicating that invertebrates are the most sensitive species to fluoride. These results of evaluating the environmental risks of fluoride in lake water and sediments reflected its significant impact on aquatic organisms living in the lake area in the long term.


Assuntos
Fluoretos , Poluentes Químicos da Água , Criança , Humanos , Feminino , Masculino , Fluoretos/toxicidade , Fluoretos/análise , Sedimentos Geológicos/análise , Mar Mediterrâneo , Egito , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Organismos Aquáticos , Água , Medição de Risco
3.
Materials (Basel) ; 15(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143687

RESUMO

Significant efforts have been made to improve adsorbents capable of eliminating pollutants from aqueous solutions, making it simple and quick to separate from the treated solution. In the current study, the removal of Crystal Violet Dye (CVD) from an aqueous synthetic solution onto a marine diatom alga, Skeletonema costatum, was investigated. Different experiments were conducted as a function of different pH, contact time, adsorbent dosage, temperature, and initial CVD concentration. The highest adsorption efficiency (98%) was obtained at 0.4 g of S. costatum, pH 3, and a contact time of 120 min, at 25 °C. Furthermore, Fourier-transform infrared spectroscopy (FTIR) results display that binding of CVD on S. costatum may occur by electrostatic and complexation reactions. Moreover, the Brunauer-Emmett-Teller surface area analysis (BET) obtained was 87.17 m2 g-1, which, in addition to a scanning electron microscope (SEM), reveals large pores that could enhance the uptake of large molecules. However, the equilibrium adsorption models were conducted by Halsey, Langmuir, Freundlich, Henderson, and Tempkin isotherm. In addition, multilayer adsorption isotherm best described the uptake of CVD onto S. costatum. The maximum monolayer adsorption capacity (qmax) was 6.410 mg g-1. Moreover, thermodynamic parameters of the adsorption studies suggested that the uptake of CVD onto S. costatum was endothermic and spontaneous. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations were applied to model the adsorption kinetic data. It was seen that the kinetics of the adsorption may be described using pseudo-second-order kinetic equations. Finally, the present work concluded that the marine diatom alga S. costatum is suitable as a natural material for the adsorption of CVD.

4.
Materials (Basel) ; 15(15)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897601

RESUMO

This study aims to produce green zinc oxide nanoparticles (ZnO-NPs) derived from red seaweed (Pterocladia Capillacea) and evaluate their potential to absorb Ismate violet 2R (IV2R) ions from an aqueous solution. UV-vis spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and a Brunauer-Emmett-Teller surface area analysis (BET) were used to analyze the structural, morphological, and optical features of the synthesized nanoparticles. The change in color of the chemical solution revealed the formation of zinc oxide nanoparticles. The FTIR examination confirmed the synthesis of both Zn and ZnO nanoparticle powder, with a BET surface area of 113.751 m2 g-1 and an average pore size of 2.527 nm for the synthesized adsorbent. Furthermore, the maximum removal effectiveness of IV2R was 99% when 0.08 g ZnO-NPs was applied at a pH of 6, a temperature of 55 °C, and a contact time of 120 min. The dye adsorption capacity of the ZnO-NPs was 72.24 mg g-1. The adsorption process was also controlled by the Freundlich adsorption model and pseudo-second-order reaction kinetics. The adsorption of IV2R ions onto the ZnO-NPs could be represented as a nonideal and reversible sorption process of a nonuniform surface, according to Freundlich adsorption isotherms. In addition, the constant values of the model parameters were determined using various nonlinear regression error functions. Moreover, thermodynamic parameters such as entropy change, enthalpy change, and free energy change were investigated; the adsorption process was spontaneous and endothermic. The high capacity of the ZnO-NPs synthesized by red seaweed promotes them as promising substances for applications in water treatment for the removal of IV2R dye from aqueous systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...